The CnuK9E H-NS Complex Antagonizes DNA Binding of DicA and Leads to Temperature-Dependent Filamentous Growth in E. coli
نویسندگان
چکیده
Cnu (an OriC-binding nucleoid protein) associates with H-NS. A variant of Cnu was identified as a key factor for filamentous growth of a wild-type Escherichia coli strain at 37°C. This variant (CnuK9E) bears a substitution of a lysine to glutamic acid, causing a charge reversal in the first helix. The temperature-dependent filamentous growth of E. coli bearing CnuK9E could be reversed by either lowering the temperature to 25°C or lowering the CnuK9E concentration in the cell. Gene expression analysis suggested that downregulation of dicA by CnuK9E causes a burst of dicB transcription, which, in turn, elicits filamentous growth. In vivo assays indicated that DicA transcriptionally activates its own gene, by binding to its operator in a temperature-dependent manner. The antagonizing effect of CnuK9E with H-NS on DNA-binding activity of DicA was stronger at 37°C, presumably due to the lower operator binding of DicA at 37°C. These data suggest that the temperature-dependent negative effect of CnuK9E on DicA binding plays a major role in filamentous growth. The C-terminus of DicA shows significant amino acid sequence similarity to the DNA-binding domains of RovA and SlyA, regulators of pathogenic genes in Yersinia and Salmonella, respectively, which also show better DNA-binding activity at 25°C.
منابع مشابه
DNA interaction and antimicrobial studies of novel copper (II) complex having ternary Schiff base
A novel ternary Schiff base ligand (HL) of ONO type and its copper (II) complex weresynthesised using 2-aminophenol and o-acetoacetotoluidide. They have been characterised by theusual analytical and spectral methods. The interaction of the complex with calf-thymus (CT)DNA has been investigated by UV-Vis, viscosity measurement, cyclic voltammetry anddifferential pulse voltammetry studies. The re...
متن کاملThe Over-Expression of Biologically Active Human Growth Hormone in a T5-Based System in Escherichia coli, Studying Temperature Effect
We studied the expression of human growth hormone (hGH) in E. coli under a bacteriophage T5-base promoter in a pQE30 expression vector. For an efficient expression of hGH cDNA, a number of codons at the hGH N-terminal coding region were altered based on the E. coli major codons. An over-expression of hGH in the bacteria, carrying the recombinant plasmids, was observed at 37°C in the presence of...
متن کاملThermoregulation of Escherichia coli pap transcription: H-NS is a temperature-dependent DNA methylation blocking factor.
The expression of Pap pili that facilitate the attachment of Escherichia coli to uroepithelial cells is shut off outside the host at temperatures below 26 degrees C. Ribonuclease protection analysis showed that this thermoregulatory response was rapid as evidenced by the absence of papBA transcripts, coding for Pap pilin, after only one generation of growth at 23 degrees C. The histone-like nuc...
متن کاملControl of cell division in Escherichia coli. DNA sequence of dicA and of a second gene complementing mutation dicA1, dicC.
A mutation in a gene dicA of Escherichia coli leads to temperature-sensitive cell division, by allowing expression of a nearby division inhibition gene dicB (1). We have now established the sequence of the DicA region and identified DicA as a 15.5 KD protein. A second gene dicC transcribed divergently from dicA and coding for an 8.5 KD protein can also complement mutation dicA1 when provided on...
متن کاملTemperature- and H-NS-dependent regulation of a plasmid-encoded virulence operon expressing Escherichia coli hemolysin.
Proteins H-NS and Hha form a nucleoprotein complex that modulates expression of the thermoregulated hly operon of Escherichia coli. We have been able to identify two H-NS binding sites in the hly regulatory region. One of them partially overlaps the promoter region (site II), and the other is located about 2 kbp upstream (site I). In contrast, Hha protein did not show any preference for specifi...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
دوره 7 شماره
صفحات -
تاریخ انتشار 2012